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Abstract. Long range interactions in periodic systems should be treated using the 
Ewald potential. For systems larger than a few hundred particles this is best calculated 
using the particle-particle, particle-mesh (P3M) method. 

INTRODUCTION 

Although most of the simulations I’ve worked on involve the Coulomb potential, 
since along with the Fermi exclusion principle it accounts for most of the properties 
of condensed matter systems, two distinct problems stand out where a proper 
treatment and understanding of the long range nature of the interaction was the 
focus. This talk recounts in a colloquial fashion the lessons drawn from these two 
problems. 

The first, done in collaboration with B. J. Alder almost twenty years ago, con- 
cerned the calculation of the dielectric properties of polar condensed matter sys- 
tems. An understanding of how to apply fluctuation relations or external field 
methods allowed the first, to my knowledge, correct computation of the dielectric 
properties, including frequency [l] and wave vector dependence [2] and polarizabil- 
ity [3] of a polar liquid. 

The second was part of a recent collaboration involving Livermore and Sandia 
National Labs, Bristol Meyers Squibb, DuPont, and the then Cray Research to 
develop a massively parallel code to simulate biomolecular or polymeric systems. 
This code is now available free under licensing agreement [4]. In the course of this 
we concluded that the P3M method developed by Hackney and Eastwood [5], as 
opposed to a direct Ewald or fast multipole method was the most efficient way of 
treating the long range interactions in large (N 2 200 particles) on either single or 
multiprocessor machines. 



EWALD POTENTIALS, BOUNDARY CONDITIONS, 
TRUNCATION EFFECTS 

The Coulomb potential energy sum, U, in an extended system is conditionally 
convergent. What is needed to define it is a summation order, typically given 
physically by considering a system of a certain shape (e.g. sphere, slab, etc.) which 
is maintained while the system expands. The result is [6] 

u = UEwald + shape dependent stuff. (1) 

Most textbook derivations of the Ewald potential, where an absolutely convergent 
sum mysteriously appears after the application of two nonobvious integral identi- 
ties, ignore this question. [7] 

For a generalized ellipsoidal shaped crystal the electrostatic potential per periodic 
cell, 

U = UEwald + &(AP; + BP; + CP,“) 

where the shape dependent factors A + B + C = 47r and P is the dipole moment 
per periodic cell of volume 0 The Ewald potential thus does not contain the shape 
dependent surface terms. 

The most detailed derivation of this result is that of deleeuw, Perram, and 
Smith [8]. There are also several simpler intuitive ways of seeing this. 

A slight generalization of the usual Ewald derivation can be applied to the 
screened Coulomb potential, exp(-r/X)/r. At the end of the calculation the zero 
wave vector terms vanish because of charge neutrality and the screening length can 
then be taken arbitrarily large to get the usual Ewald form which suggests that 
boundary effects are not included. 

As a more direct example consider the local field in a cubic lattice of unit dipoles 
oriented along the 2 axis. The dipolar lattice sum can be exactly summed over a 
large spherical region and the remaining sum done as an integral which is converted 
after integration by parts to a surface integral over the inner spherical surface (XI,) 
and the outer surface of the crystal (dR2) 

(3) 

where 82 = dRr + 222. The sum over the sphere is zero by cubic symmetry and 
the inner surface integral evaluates to -47r/3 so the local field expression reduces 
to 



The outer surface integral can be done for simple cases, giving for example 47r/3 
again for a spherical sample and thus a local field of 0. For a slab perpendicular to 
the ,? axis the integral is 4n and the resulting local field -8n-/3. 

What happens if the local field sum is evaluated by the Ewald formula ? The 
result is 47r/3 showing that the outer surface integral is not included. 

It is apparent from Eq. 2 that boundaries suppress polarization fluctuations. A 
surface polarization produces a field which resists further polarization. If, as in the 
calculation of dielectric properties, the result is to be obtained from polarization 
fluctuations [9] then their suppression is clearly undesirable. The Ewald potential 
corresponds to the best boundary condition for this type of calculation. 

To expand on these remarks: the dielectric constant is defined by the relation 
between the average polarization density and the Maxwell electric field 

<p>= k-11) <E> 
R 471. (5) 

A non-zero average polarization can be produced by an external field, or in terms 
of the Hamiltonian 

H = Ho - P . Eest (6) 

so 

e-PH = ,-PHo 1 ( + PP . Eat + 0 (E:xt)) . 

This gives the linear response result 

< P >= /3 < PP > +Eezt 

and by comparison with the definition 

(f - 1) 
4n 

< E >= p!2 < PP > sEeat. 

(7) 

(8) 

(9) 
Since the dielectric properties are independent of the sample shape, the polarization 
fluctuations will mirror the relation between the Maxwell and the external field. 

For example in the case of a slab perpendicular to 5, E, = EiZt/e and from the 
preceding equation 

47rPR < P,” >= (1 - l/E) . (10) 

The polarizations fluctuations perpendicular to the slab face saturate as E increases 
and it would be impossible to accurately determine a large E from these fluctua- 
tions in a simulation of the system. This is also true for a truncated interaction. 
“Reaction field” methods have been shown, after the fact, to be workable but they 
seem unnecessary, typically require several iterations to check for size dependence 
and violate the spirit of periodic boundary conditions. 



For the Ewald potential < E >= EeZt so 

47rpfi < P2 > /3 = (e - 1) . 

The polarization fluctuations scale linearly with E which can now be accurately 
computed. 

Although examples can be and were given at this conference of large macro- 
molecules where the interest is in events in a small region and it might be desirable 
to replace most of the system with a bath or dielectric continuum, in general the 
remark about socialism attributed to Oscar Wilde applies to dielectric continuum: 
“It takes up too many evenings”. Discussions about where to start the continuum 
approximation (2nd shell, 3rd shell of neighbors etc.), whether to treat it as re- 
sponding linearly or nonlinearly to the central discrete part of the system, what 
other properties to include seem never to cease and it’s better they never start. 
Application of Moore’s law, the doubling of computer power every two years or so, 
is perhaps the preferred solution. 

P3M 

To follow the advice given in the last paragraph it is necessary to find an efficient 
way to evaluate Coulomb interactions for large systems. We advocate and review 
the particle-particle, particle-mesh method discussed in the book of Hackney and 
Eastwood [5] and several recent articles [lo], [ll]. Our remarks are condensed from 
reference [12]. The P3M method can be routinely applied to any Ewald formulation 
(inverse power interactions, dipolar interactions, vortex-vortex interactions etc.) 
but we will focus on the Coulomb case. 

The P3M method will be introduced by a sequence of three conceptual steps the 
first two of which are displayed in the cartoon below. We first repeat a standard, 
non-rigorous, derivation for the Coulomb Ewald formula by adding and subtracting 
Gaussian charge densities from the point charges to get the usual short ranged and 
smooth long ranged terms. In step two the Gaussian densities forming the smooth 
long ranged term, evaluated in Fourier space, are then discretized in order to use 
FFT techniques. In the third step these Gaussian densities are replaced by a sim- 
pler grid assignment function and the Coulomb Green’s function correspondingly 
modified to give the final P3M formulation. 

As shown by the first arrow in the cartoon below, Gaussian charge densities are 
added and subtracted from the original point charges in a periodic cell. 

The Coulomb sum 

(13) 



FIGURE 1. Cartoon showing first two steps in explaining the P3M method: addition and 
subtraction of Gaussian densities to, here, four charges in the periodic cell to derive the usual 
Ewald formula, and the imposition of a grid to derive the mesh Ewald method 

where the Gaussian charge density 

3’2 e-G2(r-r’)2 . (14) 

The first, short ranged, term is evaluated analytically and the second term trans- 
formed to Fourier space to get the usual Ewald formula 

u = x r x QiQp-fc(GIrij + LI/fi> 4~ 

lrij + LI +c -....-e-k2/2G2 IS(k) I2 - 

i <j L k#O L3k2 

(15) 
with S(k) = Cy=, Qje ik’rj and k = Fn, n = 0.. .a. 



For N charges in the periodic cell the time to evaluate the two terms is 

G3 
T = clN$ +- c2N-N 

P 

where ci and c2 are constants. When this is minimized with G, G3 - p/D and 
the familiar T N N3i2 scaling results. If G is fixed the scaling degrades to O(N2). 

In the second step, sometimes called mesh Ewald, a grid is imposed and the 
Gaussian densities are discretized so 

C 47Te~k212G’~S(q)/2 3 g -$$&)I2 
k#O L3iiT2 

(17) 

where q = Fn, n = 0. . . A4 - 1 with the grid spacing A = L/M and p(q) is the 
discrete Fourier transform of the total Gaussian density. 

The accuracy of this discretization depends on the Gaussian width divided by 
the grid spacing,N l/GA, so for a given accuracy A - l/G and the number of grid 
points M3 = L3/A3 - NG3/p. With a discretized density the FFT can be used. 
The time necessary to evaluate U is now 

P T=c~N-+c~N+c~- 
G3 

The successive terms are for evaluating the short range terms, as before; the time 
to form p(r) on the grid;the time necessary to calculate the p(q); and finally the 
time required to do the sum. Minimizing with G now leads to G3 N l/m and 
T- Nm. Now a non-optimal G degrades the scaling only to N In N. This 
is important in practice since the range of possibly other short range interactions 
may dictate the choice of G. 

The third step of replacing the Gaussian densities by a finite range assignment 
function gives the final form of the P3M method. The simplest assignment function, 
Wi, assigns the charge density to the nearest grid point in each direction. The full 
assignment function being a product of Ws along each axis. The higher order 
assignment functions are convolutions of Wi, W, = Wi * Wn-i, and span n grid 
points in each direction. The first four such functions are shown below (solid lines) 
in figure 2 and by the law of large numbers quickly converge back to Gaussians 
(dashed line). 

Successive increases in n increase the accuracy of the force calculation by roughly 
an order of magnitude as shown in figure 3. The use of a finite range assignment 
function speeds up the calculation but does not change the basic scaling with 
number of particles. It is also advantageous for parallel processing codes using a 
domain decomposition technique since only particles within a thin layer of n/2 grid 
points from an adjacent domain contribute to the density on that domain thus 
reducing the necessary message passing. 
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FIGURE 2. First 4 grid assignment functions (solid line) and approximating Gaussians (dashed 
line), o2 = 72/12. 

Since the p(q) of Eq. 17 have now been replaced by Wn(q) the Coulomb Green’s 
function, 4n/q2, is replaced by T,(q). A d erivation of T,(q) is given in the ap- 
pendix. For large n and large grids it converges again to 47r/q2. 

Recounting, the steps involved in a P3M calculation: the charge density of the 
N particles is assigned to the grid 

~(4 = ~Q$K(r, -q) ; 
j=l 

(1% 

this density is Fourier transformed using an FFT, p(rg) =+ p(q); the inverse trans- 
form of Win(q)p(q) g’ Ives the electric field at the grid points, E(r,); and finally the 
electric field is interpolated back to the particles, 

E(q) = c JV& - r,)E(r,) . 
9 (20) 
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FIGURE 3. Relative accuracies of the Fourier space part of the forces for various choices of grid 
assignment function. The dashed curve is for the mesh Ewald method and the numbers above 
the x-axis give the number of grid points around each Gaussian that must be included with this 
method. For P3M each charge is assigned to n3 grid points. 

As Hackney and Eastwood show the same IV, must be used in assigning the charge 
to the grid and in interpolating the field back to the particles in order to satisfy 
Newton’s third law. 

Figure 4 compares typical times for a force calculation on a single processor 
machine for three methods; standard Ewald, P3M, and the fast multipole method 
FMM, as a function of the number of particles in the periodic cell. As discussed 
in more detail in reference [12] P3M has several advantages over FIUM. From 
personal experience and reports in the literature a casually written FMM code can 
be ponderously slow even if scaling as O(N). The FMM code, written by Jim Glosli, 
used in fig. 4 was highly optimized as indicated by the low crossover between the 
FMM and standard Ewald timings. 

Since much of the impetus to develop fast methods came from simulations of 
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FIGURE 4. Timings for complete force calculation of various size systems using standard Ewald, 
fast multipole method, and P3M. Details are given in reference [12]. 

nonperiodic systems primarily gravitational interactions in star clusters, as a final 
topic we discuss how finite geometries such as spherical clusters or slabs are handled 
with P3M. The idea is the same for both. Since the speed of the method comes 
from the FFT we wish to maintain a periodic system. This is done by truncating 
the interaction (either in 3 or 1 dimensions here) such that all interactions in the 
original system are unchanged but the fictitious periodic images do not interact 
which will require an appropriate periodic cell size. 

For example in a finite cluster contained within a bounding sphere of radius 
R, taking the interaction truncation radius R, > 2R leaves all interactions in the 
cluster unchanged. Taking the periodic cell length L 2 R, + 2R assures that 
periodic images don’t interact. 

Repeating the derivation of Eq. 15 for this truncated potential the short range 
(erfc) terms are unaffected, as long as R, exceeds the overlap of the Gaussians which 
is trivially achieved for a large system. In the second, Fourier term, the Fourier 



transform of the truncated potential, i.e. (47r/,k”)[l-cos(kR,)] replaces 47r/k2. The 
transition to P3M proceeds exactly as before. For a non-neutral or gravitational 
cluster the k = 0 term must be included which adds AU = (nRz/L3) Cj Qj” to the 
potential. 

The case of a periodic slab in the x - y plane proceeds similarly with 47r/lc2 now 
replaced by 

47r 

-i k2 
[l - e-“II’c(cos(k,Z,) - !$ sin(k,Z,))] 
[l - COS(~~Z~)] for lcll = 0 (21) 

where lcll = dk:;L. + ‘cy” . 
The use of a larger periodic cell and thus larger number of grid points only 

affects the FFTs which are typically 10% or less of the overall calculation so the 
final timings are not seriously increased. 

A discussion of the multi-processor aspects of P3M can be found in ref. [la]. The 
bulk of the computational time is spent in assigning the charge density to the grid 
and in interpolating the field from the grid to the charged particles. The time for 
these operations scales inversely with the number of processors. The multiprocessor 
FFT, which as stated above takes roughly 10 % of the computational time, does 
not inherently scale inversely with the number of processors. It is difficult to 
make a general statement but typically for an n/ir3 grid deviations of the FFT from 
inverse scaling are about 10 % at iU processors and increases for larger numbers 
of processors. So far in our experience this has not been a serious, or even mild, 
limitation on the use of P3M on multiprocessor computers. 

A OPTIMAL TN 

The optimal 57, (q) is chosen by minimizing the mean squared difference between 
the electric field at T produced by a charge at T’ calculated exactly from the Ewald 
formula and by the P3M approximation for arbitrary choice of T and T’ in the 
periodic cell. The short range terms are the same for Ewald and P3M so only the 
particle-mesh, Fourier space, terms are considered. Repeating, the quantity 

is to be minimized with respect to T,(q). 
We will use k with k, = (27r/L)[O, . . . , 001 for the full Fourier series and q with 

4x = (27490, . . . , A/l - l] for the discrete version for functions tabulated on a grid 
of M3 points. The difference between the full and discrete series 

c=cc 
k q b 

(AZ) 

is the inclusion of the Brillouin zone vectors b with b, = (27r/a)[O, . . . ,001 and 
LJ = L/M, or the appropriate generalization for a non cubic periodic cell. 



In the Ewald formula the Fourier space part of the “electric field” 

EEw(r; r’) = c ikT(k;)eeik’(‘-“) . 
k#O 

For the Coulomb case 

w 

but we shall keep it general to allow for other long range interactions. 
The explicit expression for EPM (r; r’) is somewhat more complicated but follows 

straight forwardly from the steps outlined in the preceding section, 

EPM(r; r’) = c wn(r - dE, 
g 

(W 

with 

E, = c iqTn(q)Wn(q)epiq’rg 
q 

and 

Wn.(q) = $ C Wn(r’ - g’)e--iq’r’g’ . 
g’ 

(A6) 

647) 

This gives 

EPM(r; r’) = --& y x Wn(r - g) (A8) c iqT,(q)e-iq’(‘R-rg’) Wn(r’ - g’) 
g g’ q 1 

To do the integrals over the periodic cell in the definition of Q the Fourier transform 

Wn(r) = c Wn(k)epik”’ (A% 
k 

is needed. The full series over k is used since the Wn(r) are analytic functions and 
not limited to values on a grid. The identity 

ce i(k-sbg - ~36~,+~ - , 
g 

WO) 

allows the sums over g and g’ to be done giving 

EPM(r; r’) = AI3 xiqT,(q)e8q’(‘-“) c Wn(q + b)emib” c W,(q + b’)eCib”” . 
q b b' 

(All) 

The terms in Q may now be evaluated using 



J dreik” = L36k,o W) 

and also noting that bq+b,ql+b, = Sq,q,6b,b, . 

JJ dr dr’FEW(r; r’) 1 FEW(r; r’) = L6 c k2T2(k) Gw 
k#O 

JJ dr dr’FE”(r; r’) . j@” (r; r’) = M3L6 x x(q + b) . q T(q + b)T,(q)@(q + b) 
‘l b 

W4) 

JJ dr dr’FPM (r; r’) . FpM(r; r’) = M3L6 x xx q2Ti(q)Wi(q + b)Wi(q + b’) . 
q b b' 

(AN 

Using these and varying Q with T,(q) gives the optimal 

1 CbTT(q+ b)W,(q+b) 
z&l) = $- 

[&%%l+b)]2 ’ 
W) 

The denominator can be summed exactly and the numerator is quickly convergent. 
The T,(q) are calculated once at the beginning of the simulation. If the simulation 
involves varying the periodic cell then, of course, it is necessary to recalculate for 
each new periodic cell. 
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